Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
1.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
2.
Neurosci Lett ; 812: 137406, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37480979

RESUMO

BACKGROUND: This study aimed to assess the effectiveness of swimming exercise in alleviating mechanical hypersensitivity and peripheral nerve degeneration associated with a pre-clinical model of painful diabetic neuropathy (PDN). METHODS: This study is a pre-clinical study conducted using the streptozocin (STZ)-induced PDN rat model. Rats were randomly allocated to three groups: a vehicle group of non-diabetic rats (Vehicle, n = 9), a group of rats with PDN (PDN, n = 8), and a group of rats with PDN that performed a swimming exercise program (PDN-SW, n = 10). The swimming exercise program included daily 30-minute swimming exercise, 5 days per week for 4 weeks. Von Frey testing was used to monitor hindpaw mechanical sensitivity over 4 weeks. Assessment of cutaneous peripheral nerve fiber integrity was performed after the 4-week study period via immunohistochemistry for protein gene product 9.5-positive (PGP9.5+) intra-epidermal nerve fiber density (IENFD) in hind-paw skin biopsies by a blinded investigator. RESULTS: The results showed that swimming exercise mitigated but did not fully reverse mechanical hypersensitivity in rats with PDN. Immunohistochemical testing revealed that the rats in the PDN-SW group retained higher PGP9.5+ IENFD compared to the PDN group but did not reach normal levels of the Vehicle group. CONCLUSIONS: The results of this study indicate that swimming exercise can mitigate mechanical hypersensitivity and degeneration of peripheral nerve fibers in rats with experimental PDN.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Ratos , Animais , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Natação , Fibras Nervosas/metabolismo , Nervos Periféricos/metabolismo
3.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295578

RESUMO

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Proglucagon , Transdução de Sinais , Animais , Ratos , Hipotálamo/fisiologia , Proglucagon/metabolismo , Ratos Sprague-Dawley , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Sinapses , Fibras Nervosas/metabolismo , Eletrofisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resposta de Saciedade , Comportamento Alimentar
4.
FASEB J ; 37(4): e22892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951647

RESUMO

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Pele , Fibras Nervosas/metabolismo , Sensação , Peptídeos/farmacologia , Regeneração Nervosa/fisiologia
5.
Exp Eye Res ; 230: 109438, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933693

RESUMO

The purposes of the present study were to (1) identify the relationship between dry eye symptoms and morphological changes in corneal subbasal nerves/ocular surfaces, and (2) discover tear film biomarkers indicating morphological changes in the subbasal nerves. This was a prospective cross-sectional study conducted between October and November 2017. Adults with dry eye disease (DED, n = 43) and healthy eyes (n = 16) were evaluated based on their subjective symptoms and ophthalmological findings. Corneal subbasal nerves were observed using confocal laser scanning microscopy. Nerve lengths, densities, branch numbers, and nerve fiber tortuosity were analyzed using ACCMetrics and CCMetrics image analysis systems; tear proteins were quantified by mass spectroscopy. Compared with the control group, the DED group had significantly lower tear breakup times (TBUT) and pain tolerance capacity, and significantly higher corneal nerve branch density (CNBD) and corneal nerve total branch density (CTBD). CNBD and CTBD showed significant negative correlations with TBUT. Six biomarkers (cystatin-S, immunoglobulin kappa constant, neutrophil gelatinase-associated lipocalin, profilin-1, protein S100-A8, and protein S100-A9) showed significant positive correlations with CNBD and CTBD. The significantly higher CNBD and CTBD in the DED group suggests that DED is associated with morphological alterations in corneal nerves. The correlation of TBUT with CNBD and CTBD further supports this inference. Six candidate biomarkers that correlate with morphological changes were identified. Thus, morphological changes in corneal nerves are a hallmark of DED, and confocal microscopy may help in the diagnosis and treatment of dry eyes.


Assuntos
Córnea , Síndromes do Olho Seco , Adulto , Humanos , Estudos Transversais , Estudos Prospectivos , Córnea/metabolismo , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/metabolismo , Fibras Nervosas/metabolismo , Lágrimas/metabolismo , Microscopia Confocal/métodos
6.
Braz Oral Res ; 37: e020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36790260

RESUMO

The diagnosis of irreversible pulpitis (IP) depends on clinical data, especially the chief complaint of the patient, visual inspection, response to the application of stimuli, and radiographic examination. The characterization of nerve fibers (NF) in IP may contribute to better interpret painful symptoms, but has been barely explored. This study sought to characterize the density and integrity of NF in 16 samples of IP and in five healthy pulps (HP) using S-100 and PGP 9.5 markers. Immunohistochemistry was performed to determine the density/mm2 of S-100+ and PGP 9.5+ in NF. The amount of degenerated NF was obtained by subtracting the total NF density from the amount of intact NF. Associations between NF density and integrity and symptomatology were calculated. All samples were positive for S-100 and PGP 9.5. Compared to HP samples (38.20/mm2), IP samples had a lower density of intact NF (6.24/mm2). A significantly higher density of degenerated NF was found in IP samples with spontaneous pain (39.59/mm2) compared to those with provoked pain (23.96/mm2) (p = 0.02). No association was observed between intensity of the inflammatory infiltrate and NF density and integrity (p > 0.05). The findings of this study suggest that pulpitis may involve different stages of degeneration and may be more advanced in cases with spontaneous pain. The symptoms reported by affected individuals do not appear to depend on the intensity of the inflammatory infiltrate, but rather on the integrity of NF.


Assuntos
Pulpite , Humanos , Polpa Dentária/diagnóstico por imagem , Fibras Nervosas/metabolismo , Imuno-Histoquímica , Dor
7.
Physiol Rep ; 11(4): e15604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36823776

RESUMO

It is well known that the main forms of innervation are synapses and free nerve endings, while other forms of innervation have not been reported. Here, we explore a new way of innervating lymphoid organs. Male Sprague-Dawley rats were used for studying the innervation of sympathetic nerve fibers in lymph nodes by means of anterograde tracking, immunoelectron microscopy, three-dimension reconstruction analysis, and immunofluorescence labeling. The results showed that the Fluoro-Ruby labeled nerve endings targeted only a group of cells in the lymph nodes and entered the cells through the plasma membrane. The electron microscopy showed that the biotinylated glucan amine reaction elements were distributed in the cytoplasm, and most of the biotinylated glucan amine active elements were concentrated on the microtubule and microfilament walls. Birbeck particles with rod-shaped and/or tennis racket like structures can be seen in the labeled cells at high magnification, and Birbeck particles contain biotinylated glucan amine-reactive elements. The immunofluoresence results showed that the Fluoro-Ruby-labeled nerve innervating cells expressed CD207 and CD1a protein. This result confirmed that the labeled cells were Langerhans cells. Our findings suggested that Langerhans cells might serve as a "bridge cell" for neuroimmune cross-talking in lymph organs, which play an important role in transmitting signals of the nervous system to immune system. This study also opened up a new way for further study of immune regulation mechanism.


Assuntos
Linfonodos , Sistema Linfático , Animais , Masculino , Ratos , Glucanos/metabolismo , Linfonodos/inervação , Sistema Linfático/inervação , Fibras Nervosas/metabolismo , Ratos Sprague-Dawley
8.
Am J Physiol Endocrinol Metab ; 324(3): E251-E267, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696598

RESUMO

The autonomic nervous system regulates pancreatic function. Islet capillaries are essential for the extension of axonal projections into islets, and both of these structures are important for appropriate islet hormone secretion. Because beta cells provide important paracrine cues for islet glucagon secretion and neurovascular development, we postulated that beta cell loss in type 1 diabetes (T1D) would lead to a decline in intraislet capillaries and reduction of islet innervation, possibly contributing to abnormal glucagon secretion. To define morphological characteristics of capillaries and nerve fibers in islets and acinar tissue compartments, we analyzed neurovascular assembly across the largest cohort of T1D and normal individuals studied thus far. Because innervation has been studied extensively in rodent models of T1D, we also compared the neurovascular architecture between mouse and human pancreas and assembled transcriptomic profiles of molecules guiding islet angiogenesis and neuronal development. We found striking interspecies differences in islet neurovascular assembly but relatively modest differences at transcriptome level, suggesting that posttranscriptional regulation may be involved in this process. To determine whether islet neurovascular arrangement is altered after beta cell loss in T1D, we compared pancreatic tissues from non-diabetic, recent-onset T1D (<10-yr duration), and longstanding T1D (>10-yr duration) donors. Recent-onset T1D showed greater islet and acinar capillary density compared to non-diabetic and longstanding T1D donors. Both recent-onset and longstanding T1D had greater islet nerve fiber density compared to non-diabetic donors. We did not detect changes in sympathetic axons in either T1D cohort. Additionally, nerve fibers overlapped with extracellular matrix (ECM), supporting its role in the formation and function of axonal processes. These results indicate that pancreatic capillaries and nerve fibers persist in T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components.NEW & NOTEWORTHY Defining the neurovascular architecture in the pancreas of individuals with type 1 diabetes (T1D) is crucial to understanding the mechanisms of dysregulated glucagon secretion. In the largest T1D cohort of biobanked tissues analyzed to date, we found that pancreatic capillaries and nerve fibers persist in human T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components. Because innervation has been studied extensively in rodent T1D models, our studies also provide the first rigorous direct comparisons of neurovascular assembly in mouse and human, indicating dramatic interspecies differences.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucagon/metabolismo , Capilares/metabolismo , Células Secretoras de Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibras Nervosas/metabolismo
9.
Mol Med ; 29(1): 4, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650454

RESUMO

BACKGROUND: Inflammation, the physiological response to infection and injury, is coordinated by the immune and nervous systems. Interleukin-1ß (IL-1ß) and other cytokines produced during inflammatory responses activate sensory neurons (nociceptors) to mediate the onset of pain, sickness behavior, and metabolic responses. Although nociceptors expressing Transient Receptor Potential Ankyrin-1 (TRPA1) can initiate inflammation, comparatively little is known about the role of TRPA1 nociceptors in the physiological responses to specific cytokines. METHODS: To monitor body temperature in conscious and unrestrained mice, telemetry probes were implanted into peritoneal cavity of mice. Using transgenic and tissue specific knockouts and chemogenetic techniques, we recorded temperature responses to the potent pro-inflammatory cytokine IL-1ß. Using calcium imaging, whole cell patch clamping and whole nerve recordings, we investigated the role of TRPA1 during IL-1ß-mediated neuronal activation. Mouse models of acute endotoxemia and sepsis were used to elucidate how specific activation, with optogenetics and chemogenetics, or ablation of TRPA1 neurons can affect the outcomes of inflammatory insults. All statistical tests were performed with GraphPad Prism 9 software and for all analyses, P ≤ 0.05 was considered statistically significant. RESULTS: Here, we describe a previously unrecognized mechanism by which IL-1ß activates afferent vagus nerve fibers to trigger hypothermia, a response which is abolished by selective silencing of neuronal TRPA1. Afferent vagus nerve TRPA1 signaling also inhibits endotoxin-stimulated cytokine storm and significantly reduces the lethality of bacterial sepsis. CONCLUSION: Thus, IL-1ß activates TRPA1 vagus nerve signaling in the afferent arm of a reflex anti-inflammatory response which inhibits cytokine release, induces hypothermia, and reduces the mortality of infection. This discovery establishes that TRPA1, an ion channel known previously as a pro-inflammatory detector of cold, pain, itch, and a wide variety of noxious molecules, also plays a specific anti-inflammatory role via activating reflex anti-inflammatory activity.


Assuntos
Hipotermia Induzida , Hipotermia , Interleucina-1beta , Canais de Potencial de Receptor Transitório , Animais , Camundongos , Anquirinas/metabolismo , Citocinas/metabolismo , Hipotermia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Fibras Nervosas/metabolismo , Dor/metabolismo , Reflexo , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Nervo Vago/metabolismo
10.
Sci Rep ; 13(1): 74, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593314

RESUMO

Tissue injury affects nerve fibers and triggers an immune response, leading to inflammation. The complement system gets activated during inflammatory conditions and has been reported to be involved in the regeneration process. We have demonstrated that the C5a receptor (C5aR) has crucial roles in regeneration and healing processes including nerve sprouting and hard tissue formation. Another C5a-like 2 receptor (C5AR2; C5L2) has been cloned which is still considered controversial due to limited studies. We previously established that C5L2 regulates brain-derived neurotrophic factor (BDNF) secretion in pulp fibroblasts. However, there is no study available on human dental pulp stem cells (DPSCs), especially in the inflammatory context. Stem cell therapy is an emerging technique to treat and prevent several diseases. DPSCs are a great option to be considered due to their great ability to differentiate into a variety of cells and secrete nerve regeneration factors. Here, we demonstrated that C5L2 modulates BDNF secretion in DPSCs. Our results stated that C5L2 silencing through siRNA could increase BDNF production, which could accelerate the nerve regeneration process. Moreover, stimulation with lipopolysaccharide (LPS) enhanced BDNF production in C5L2 silenced DPSCs. Finally, we quantified BDNF secretion in supernatant and cell lysates using ELISA. Our results showed enhanced BDNF production in C5L2 silenced DPSCs and hampered by the p38MAPKα inhibitor. Taken together, our data reveal that C5L2 modulates BDNF production in DPSCs via the p38MAPKα pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Polpa Dentária , Receptor da Anafilatoxina C5a , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Polpa Dentária/metabolismo , Fibras Nervosas/metabolismo , Regeneração Nervosa/fisiologia , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Células-Tronco/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
11.
Scand J Pain ; 23(1): 14-24, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35850720

RESUMO

OBJECTIVES: Management of chronic tendon pain is difficult and controversial. This is due to poor knowledge of the underlying pathophysiology of chronic tendon pain, priorly known as tendinitis but now termed tendinopathy. The objective of this topical review was to synthesize evolving information of mechanisms in tendon pain, using a comprehensive search of the available literature on this topic. CONTENT: This review found no correlations between tendon degeneration, collagen separation or neovascularization and chronic tendon pain. The synthesis demonstrated that chronic tendon pain, however, is characterized by excessive nerve sprouting with ingrowth in the tendon proper, which corresponds to alterations oberserved also in other connective tissues of chronic pain conditions. Healthy, painfree tendons are devoid of nerve fibers in the tendon proper, while innervation is confined to tendon surrounding structures, such as sheaths. Chronic painful tendons exhibit elevated amounts of pain neuromediators, such as glutamate and substance p as well as up-regulated expression and excitability of pain receptors, such as the glutamate receptor NMDAR1 and the SP receptor NK1, found on ingrown nerves and immune cells. Increasing evidence indicates that mast cells serve as an important link between the peripheral nervous system and the immune systems resulting in so called neurogenic inflammation. SUMMARY: Chronic painful tendons exhibit (1) protracted ingrowth of sensory nerves (2) elevated pain mediator levels and (3) up-regulated expression and excitability of pain receptors, participating in (4) neuro-immune pathways involved in pain regulation. Current treatments that entail the highest scientific evidence to mitigate chronic tendon pain include eccentric exercises and extracorporeal shockwave, which both target peripheral neoinnervation aiming at nerve regeneration. OUTLOOK: Potential mechanism-based pharmacological treatment approaches could be developed by blocking promotors of nerve ingrowth, such as NGF, and promoting inhibitors of nerve ingrowth, like semaphorins, as well as blocking glutamate-NMDA-receptor pathways, which are prominent in chronic tendon pain.


Assuntos
Dor Crônica , Tendinopatia , Humanos , Tendões/inervação , Tendões/metabolismo , Tendinopatia/terapia , Fibras Nervosas/metabolismo , Ácido Glutâmico , Doença Crônica , Dor Crônica/terapia , Dor Crônica/metabolismo
12.
Sci Rep ; 12(1): 17750, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273238

RESUMO

Retinopathy and neuropathy in type 2 diabetes are preceded by retinal nerve fibre layer (RNFL) thinning, an index of neurodegeneration. We investigated whether glucose metabolism status (GMS), measures of glycaemia, and daily glucose variability (GV) are associated with RNFL thickness over the entire range of glucose tolerance. We used cross-sectional data from The Maastricht Study (up to 5455 participants, 48.9% men, mean age 59.5 years and 22.7% with type 2 diabetes) to investigate the associations of GMS, measures of glycaemia (fasting plasma glucose [FPG], 2-h post-load glucose [2-h PG], HbA1c, advanced glycation endproducts [AGEs] assessed as skin autofluorescence [SAF]) and indices of daily GV (incremental glucose peak [IGP] and continuous glucose monitoring [CGM]-assessed standard deviation [SD]) with mean RNFL thickness. We used linear regression analyses and, for GMS, P for trend analyses. We adjusted associations for demographic, cardiovascular risk and lifestyle factors, and, only for measures of GV, for indices of mean glycaemia. After full adjustment, type 2 diabetes and prediabetes (versus normal glucose metabolism) were associated with lower RNFL thickness (standardized beta [95% CI], respectively - 0.16 [- 0.25; - 0.08]; - 0.05 [- 0.13; 0.03]; Ptrend = 0.001). Greater FPG, 2-h PG, HbA1c, SAF, IGP, but not CGM-assessed SD, were also associated with lower RNFL thickness (per SD, respectively - 0.05 [- 0.08; - 0.01]; - 0.06 [- 0.09; - 0.02]; - 0.05 [- 0.08; - 0.02]; - 0.04 [- 0.07; - 0.01]; - 0.06 [- 0.12; - 0.01]; and - 0.07 [- 0.21; 0.07]). In this population-based study, a more adverse GMS and, over the entire range of glucose tolerance, greater glycaemia and daily GV were associated with lower RNFL thickness. Hence, early identification of individuals with hyperglycaemia, early glucose-lowering treatment, and early monitoring of daily GV may contribute to the prevention of RNFL thinning, an index of neurodegeneration and precursor of retinopathy and neuropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Doenças Retinianas , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Glicemia/metabolismo , Estado Pré-Diabético/complicações , Hemoglobinas Glicadas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Glucose , Estudos Transversais , Produtos Finais de Glicação Avançada , Automonitorização da Glicemia , Tomografia de Coerência Óptica , Doenças Retinianas/complicações , Fibras Nervosas/metabolismo
13.
Ageing Res Rev ; 81: 101733, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113765

RESUMO

Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Condrócitos/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Neurotransmissores/metabolismo
14.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142117

RESUMO

Hirschsprung's disease (HSCR) is a common developmental anomaly of the gastrointestinal tract in children. The most significant characteristics of aganglionic segments in HSCR are hyperplastic extrinsic nerve fibers and the absence of endogenous ganglion plexus. Double C2 domain alpha (DOC2A) is mainly located in the nucleus and is involved in Ca2+-dependent neurotransmitter release. The loss function of DOC2A influences postsynaptic protein synthesis, dendrite morphology, postsynaptic receptor density and synaptic plasticity. It is still unknown why hyperplastic extrinsic nerve fibers grow into aganglionic segments in HSCR. We detected the expression of DOC2A in HSCR aganglionic segment colons and established three DOC2A-knockdown models in the Neuro-2a cell line, neural spheres and zebrafish separately. First, we detected the protein and mRNA expression of DOC2A and found that DOC2A was negatively correlated with AChE+ grades. Second, in the Neuro-2a cell lines, we found that the amount of neurite outgrowth and mean area per cell were significantly increased, which suggested that the inhibition of DOC2A promotes nerve fiber formation and the neuron's polarity. In the neural spheres, we found that the DOC2A knockdown was manifested by a more obvious connection of nerve fibers in neural spheres. Then, we knocked down Doc2a in zebrafish and found that the down-regulation of Doc2a accelerates the formation of hyperplastic nerve fibers in aganglionic segments in zebrafish. Finally, we detected the expression of MUNC13-2 (UNC13B), which was obviously up-regulated in Grade3/4 (lower DOC2A expression) compared with Grade1/2 (higher DOC2A expression) in the circular muscle layer and longitudinal muscle layer. The expression of UNC13B was up-regulated with the knocking down of DOC2A, and there were protein interactions between DOC2A and UNC13B. The down-regulation of DOC2A may be an important factor leading to hyperplastic nerve fibers in aganglionic segments of HSCR. UNC13B seems to be a downstream molecule to DOC2A, which may participate in the spasm of aganglionic segments of HSCR patient colons.


Assuntos
Doença de Hirschsprung , Animais , Domínios C2 , Colo/metabolismo , Regulação para Baixo , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Fibras Nervosas/metabolismo , Neurotransmissores/metabolismo , RNA Mensageiro/genética , Peixe-Zebra/genética
15.
Sci Rep ; 12(1): 11801, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821224

RESUMO

The purpose of this study was to ascertain whether a correlation exists between glaucoma-associated alteration of ocular vascular haemodynamics and endothelin-1 (ET-1) levels exist. Eyes of patients with cataract (n = 30) or glaucoma (n = 68) were examined with optical coherence tomography (OCT) and OCT-angiography (OCT-A; AngioVue™-RTVue-XR; Optovue, Fremont, California, USA). The peripapillary and the macular vessel density (VD) values were measured. Inferior and superior retinal nerve fibre layer (RNFL) thickness loss was used for further OCT staging. Aqueous humour of the examined eye and plasma were sampled during cataract or glaucoma surgery and analysed by means of ELISA to determine their ET-1 level. Glaucoma eyes are characterised by reductions in RNFL thickness and VD that correlate significantly with the OCT GSS score. Peripheral and ocular ET-1 level were significantly elevated in patients with glaucoma and correlate positively with the OCT-GSS score of the entire study population. Peripapillary and macula VD of glaucoma patients correlates negatively with plasma ET-1 levels. Multivariable analysis showed a subordinate role of intraocular pressure predictive factor for impaired retinal blood flow compared with plasma ET-1 level in glaucoma. Peripheral ET-1 level serves as risk factor for detection of ocular blood flow changes in the optic nerve head region of glaucomatous eyes.


Assuntos
Catarata , Endotelina-1 , Olho , Glaucoma , Catarata/metabolismo , Catarata/patologia , Endotelina-1/metabolismo , Olho/irrigação sanguínea , Glaucoma/metabolismo , Glaucoma/patologia , Hemodinâmica , Humanos , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Fluxo Sanguíneo Regional , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Fatores de Risco , Tomografia de Coerência Óptica/métodos
16.
J Orthop Surg Res ; 17(1): 331, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761305

RESUMO

PURPOSE: To investigate the presence and change of nerve fibers and neuropeptide during early development of articular cartilage in neonatal rats. METHODS: Articular cartilage in distal-femoral epiphyses was collected from neonatal Sprague Dawley rats, which were 1-day, 5-day, and 10-day postnatal (P1, P5 and P10). Microscopy, immunofluorescence, transmission and scanning electron microscopy (TEM and SEM) were performed for detection of nerve fibers. Quantitative analysis for substance P (SP) and neuropeptide Y (NPY) was conducted using immunofluorescence and enzyme-linked immunosorbent assay (ELISA). RESULTS: TEM showed the existence of myelinated nerve fibers in the extracellular matrix of articular cartilage in both P1, P5 and P10 rats, and they formed synaptic contacts with chondrocytes. During this time, chondrocytes proceeded with their development, and the nerve fibers gradually degraded. The ELISA results showed significant increase of the sensory neuropeptide SP and the sympathetic neuropeptide NPY in the cartilage tissue. Immunofluorescence results showed the distribution of SP and NPY in the perichondrium, the cartilage canals, the plasma of chondrocytes, and extracellular matrix in the cartilage tissue. CONCLUSIONS: Nerve fibers exist in the matrix of articular cartilage during early development of knee joints in neonatal rats. Nerve fibers form synaptic contacts with chondrocytes at the early stage and then degrade gradually in the course of chondrocyte development. SP and NPY significantly increase in articular cartilage during this very period. These results indicate that the nerve fibers and the neuropeptide they secrete may exert important effect on the development of articular cartilage.


Assuntos
Cartilagem Articular , Animais , Animais Recém-Nascidos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Fibras Nervosas/química , Fibras Nervosas/metabolismo , Neuropeptídeo Y/análise , Neuropeptídeo Y/metabolismo , Ratos , Ratos Sprague-Dawley , Substância P/análise , Substância P/metabolismo
17.
J Nutr ; 152(8): 1862-1871, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35511216

RESUMO

BACKGROUND: The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES: We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS: Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS: In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS: Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.


Assuntos
Resistência à Insulina , Insulina , Animais , Glicemia/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacologia , Emulsões/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana/farmacologia , Fígado/metabolismo , Masculino , Fibras Nervosas/metabolismo , Veia Porta/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
18.
Sci Rep ; 12(1): 8444, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589940

RESUMO

Diabetes is by far, the most common cause of neuropathy, inducing neurodegeneration of terminal sensory nerve fibers associated with loss of sensation, paresthesia, and persistent pain. Foretinib prevents die-back degeneration in cultured sensory and sympathetic neurons by rescuing mitochondrial activity and has been proven safe in prospective clinical trials. Here we aimed at investigating a potential neuroprotective effect of Foretinib in experimental diabetic neuropathy. A mouse model of streptozotocin induced diabetes was used that expresses yellow fluorescent protein (YFP) in peripheral nerve fibers under the thy-1 promoter. Streptozotocin-injected mice developed a stable diabetic state (blood glucose > 270 mg/dl), with a significant reduction of intraepidermal nerve fiber density by 25% at 5 weeks compared to the non-diabetic controls. When diabetic mice were treated with Foretinib, a significantly greater volume of the cutaneous nerve fibers (67.3%) in the plantar skin was preserved compared to vehicle treated (37.8%) and non-treated (44.9%) diabetic mice while proximal nerve fiber morphology was not affected. Our results indicate a neuroprotective effect of Foretinib on cutaneous nerve fibers in experimental diabetic neuropathy. As Foretinib treated mice showed greater weight loss compared to vehicle treated controls, future studies may define more sustainable treatment regimen and thereby may allow patients to take advantage of this neuroprotective drug in chronic neurodegenerative diseases like diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Fármacos Neuroprotetores , Anilidas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/etiologia , Humanos , Camundongos , Fibras Nervosas/metabolismo , Fármacos Neuroprotetores/farmacologia , Estudos Prospectivos , Quinolinas , Estreptozocina/farmacologia
19.
Cell Mol Life Sci ; 79(5): 267, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488965

RESUMO

Recent studies have illustrated that psoriatic lesions are innervated by dense sensory nerve fibers. Psoriatic plaques appeared to improve after central or peripheral nerve injury. Therefore, the nervous system may play a vital role in psoriasis. We aimed to clarify the expression of nerve fibers in psoriasis and their relationship with immune cells and keratinocytes, and to explore the effect of skin nerve impairment. Our results illustrated that nerve fibers in psoriatic lesions increased and were closely innervated around immune cells and keratinocytes. RNA-seq analysis showed that peripheral sensory nerve-related genes were disrupted in psoriasis. In spinal cord hemi-section mice, sensory impairment improved psoriasiform dermatitis and inhibited the abnormal proliferation of keratinocytes. Botulinum toxin A alleviated psoriasiform dermatitis by inhibiting the secretion of calcitonin gene-related peptide. Collectively, cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Neurological intervention may be a new treatment strategy for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Dermatite/metabolismo , Dermatite/patologia , Epiderme/metabolismo , Queratinócitos/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Psoríase/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-35410100

RESUMO

The effect of metals on the functioning of the human eye is multifactorial and includes enzyme activity modulation, trace metal metabolic pathways changes, and cytotoxic activity. Functional dysfunctions appear mostly as a result of the accumulation of toxic xenobiotic metals or disturbances of micronutrients' homeostasis. So far, the affinity of selected metals to eye tissues, i.e., the cornea, choroid, lens, and anterior chamber fluid, has been most studied. However, it is known that many eye symptoms are related to damage to the optic nerve. In order to fill this gap, the aim of the study is to perform a multi-element analysis of tissue collected postmortem from optic chiasm and optic nerves. A total of 178 samples from 107 subjects were tested. The concentrations of 51 elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) after the wet-mineralization step. In terms of elemental composition, the optic chiasm is dominated by two trace elements, i.e., iron (Fe) and zinc (Zn), besides macro-elements Ca, K, Na, P, and Mg. The subjects formed a homogeneous cluster (over 70% subjects) with the highest accumulation of aluminum (Al). The remaining two departing clusters were characterized by an increased content of most of the elements, including toxic elements such as bismuth (Bi), uranium (U), lead (Pb), chromium (Cr), and cadmium (Cd). Changes in elemental composition with age were analyzed statistically for the selected groups, i.e., females, males, and subjects with alcohol use disorder (AUD) and without AUD. A tendency of women to lose Se, Cu, Zn, Fe with age was observed, and a disturbed Ca/Mg, Na/K ratio in subjects with AUD. Although the observed trends were not statistically significant, they shed new light on the risks and possible pathologies associated with metal neurotoxicity in the visual tract.


Assuntos
Quiasma Óptico , Oligoelementos , Feminino , Humanos , Masculino , Metais/análise , Fibras Nervosas/química , Fibras Nervosas/metabolismo , Quiasma Óptico/química , Quiasma Óptico/metabolismo , Oligoelementos/análise , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...